
CICLO DE KREBS
El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una ruta metabólica, es decir, una sucesión de reacciones químicas, que forman parte de la respiración celular en todas las células aerobias. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de hidratos de carbono, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.
Historia
El ciclo Krebs recibe su nombre en honor a su descubridor Sir Hans Krebs, quien propuso los elementos clave de el consumo de O2, en cantidad desproporcionada respecto a las cantidades añadidas. En segundo lugar, empleando malonato (inhibidor de la succinato deshidrogenasa), lograba bloquear la oxidación del piruvato, lo que indicaba su participación en la vía. Además, observó que las células tratadas con malonato acumulaban citrato, succinato y α-cetoglutarato, lo cual sugería que citrato y α-cetoglutarato eran precursores del succinato. En tercer lugar, la administración al tejido de piruvato y oxaloacetato provocaba la acumulación de citrato en el músculo, lo que indicaba que son precursores del citrato. Con base en estas observaciones experimentales Hans Krebs propuso una ruta cíclica y su secuencia de reacciones. Este esquema inicial, con ciertas modificaciones, dio lugar al ciclo de Krebs tal y como hoy lo conocemos.
Reacciones del ciclo de Krebs
El ciclo de Krebs tiene lugar en la matriz mitocondrial en eucariotas.
El acetil-CoA (Acetil Coenzima A) es el principal precursor del ciclo. El ácido cítrico (6 carbonos) o citrato se regenera en cada ciclo por condensación de un acetil-CoA (2 carbonos) con una molécula de oxaloacetato (4 carbonos). El citrato produce en cada ciclo una molécula de oxaloacetato y dos CO2, por lo que el balance neto del ciclo es:
Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 3 H2O → CoA-SH + 3 (NADH + H+) + FADH2 + GTP + 2 CO2 + 3 H+
Los dos carbonos del Acetil-CoA son oxidados a CO2, y la energía que estaba acumulada es liberada en forma de energía química: GTP y poder reductor (electrones de alto potencial): NADH y FADH2. NADH y FADH2 son coenzimas (moléculas capaces de unirse a enzimas) capaces de acumular la energía en forma de poder reductor para su conversión en energía química en la fosforilación oxidativa.
El FADH2 de la succinato deshidrogenasa, al no poder desprenderse del enzima, debe oxidarse nuevamente in situ. El FADH2 cede sus dos hidrógenos a la ubiquinona (coenzima Q), que se reduce a ubiquinol (QH2) y abandona el enzima.
Las reacciones son:
Molécula
Enzima
Tipo de reacción
Reactivos/Coenzimas
Productos/Coenzima
I. Citrato
1. Aconitasa
Deshidratación
H2O
II. cis-Aconitato
2. Aconitasa
Hidratación
H2O
III. Isocitrato
3. Isocitrato deshidrogenasa
Oxidación
NAD+
NADH + H+
IV. Oxalosuccinato
4. Isocitrato deshidrogenasa
Descarboxilación
V. α-cetoglutarato
5. α-cetoglutaratodeshidrogenasa
Descarboxilación oxidativa
NAD+ +CoA-SH
NADH + H++ CO2
VI. Succinil-CoA
6. Succinil-CoA sintetasa
Hidrólisis
GDP+ Pi
GTP +CoA-SH
VII. Succinato
7. Succinato deshidrogenasa
Oxidación
FAD
FADH2
VIII. Fumarato
8. Fumarato Hidratasa
Adición (H2O)
H2O
IX. L-Malato
9. Malato deshidrogenasa
Oxidación
NAD+
NADH + H+
X. Oxaloacetato
10. Citrato sintasa
Condensación
NOTA: El cis-aconitato es un intermedio de reacción muy inestable que rápidamente se transforma en citrato, antes de comenzar la tercera reacción.
Visión simplificada y rendimiento del proceso
El paso previo es la oxidación del piruvato, produciendo un acetil-CoA y un CO2.
El acetil-CoA reacciona con una molécula de oxaloacetato (4 carbonos) para formar citrato (6 carbonos), mediante una reacción de condensación.
A través de una serie de reacciones el citrato se convierte de nuevo en oxaloacetato.
Durante estas reacciones, se substraen 2 átomos de carbono del citrato (6C) para dar oxalacetato (4C); dichos átomos de carbono se liberan en forma de CO2
El ciclo consume netamente 1 acetil-CoA y produce 2 CO2. También consume 3 NAD+ y 1 FAD, produciendo 3 NADH + 3 H+ y 1 FADH2.
El rendimiento de un ciclo es (por cada molécula de piruvato): 1 GTP, 3 NADH, 1 FADH2, 2CO2.
Cada NADH, cuando se oxide en la cadena respiratoria, originará 2,5 moléculas de ATP (3 x 2,5 = 7,5), mientras que el FADH2 dará lugar a 1,5 ATP. Por tanto, 7,5 + 1,5 + 1 GTP = 10 ATP por cada acetil-CoA que ingresa en el ciclo de Krebs.
Cada molécula de glucosa produce (vía glucólisis) dos moléculas de piruvato, que a su vez producen dos acetil-CoA, por lo que por cada molécula de glucosa en el ciclo de Krebs se produce: 4CO2, 2 GTP, 6 NADH, 2 FADH2; total 36 ATP.
Regulación
Muchas de las enzimas del ciclo de Krebs son reguladas por retroalimentación negativa, por unión alostérica del ATP, que es un producto de la vía y un indicador del nivel energético de la célula. Entre estas enzimas se incluye el complejo de la piruvato deshidrogenasa que sintetiza el acetil-CoA necesario para la primera reacción del ciclo a partir de piruvato, procedente de la glucólisis o del catabolismo de aminoácidos. También las enzimas citrato sintasa, isocitrato deshidrogenasa y α-cetoglutarato deshidrogenasa, que catalizan las tres primeras reacciones del ciclo de Krebs, son inhibidas por altas concentraciones de ATP. Esta regulación frena este ciclo degradativo cuando el nivel energético de la célula es bueno.
Algunas enzimas son también reguladas negativamente cuando el nivel de poder reductor de la célula es elevado. El mecanismo de esta inhibición es una inhibición competitiva por producto (por NADH) de las enzimas que emplean NAD+ como sustrato. Así se regulan, entre otros, los complejos piruvato deshidrogenasa y citrato sintasa.
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.
Historia
El ciclo Krebs recibe su nombre en honor a su descubridor Sir Hans Krebs, quien propuso los elementos clave de el consumo de O2, en cantidad desproporcionada respecto a las cantidades añadidas. En segundo lugar, empleando malonato (inhibidor de la succinato deshidrogenasa), lograba bloquear la oxidación del piruvato, lo que indicaba su participación en la vía. Además, observó que las células tratadas con malonato acumulaban citrato, succinato y α-cetoglutarato, lo cual sugería que citrato y α-cetoglutarato eran precursores del succinato. En tercer lugar, la administración al tejido de piruvato y oxaloacetato provocaba la acumulación de citrato en el músculo, lo que indicaba que son precursores del citrato. Con base en estas observaciones experimentales Hans Krebs propuso una ruta cíclica y su secuencia de reacciones. Este esquema inicial, con ciertas modificaciones, dio lugar al ciclo de Krebs tal y como hoy lo conocemos.
Reacciones del ciclo de Krebs
El ciclo de Krebs tiene lugar en la matriz mitocondrial en eucariotas.
El acetil-CoA (Acetil Coenzima A) es el principal precursor del ciclo. El ácido cítrico (6 carbonos) o citrato se regenera en cada ciclo por condensación de un acetil-CoA (2 carbonos) con una molécula de oxaloacetato (4 carbonos). El citrato produce en cada ciclo una molécula de oxaloacetato y dos CO2, por lo que el balance neto del ciclo es:
Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 3 H2O → CoA-SH + 3 (NADH + H+) + FADH2 + GTP + 2 CO2 + 3 H+
Los dos carbonos del Acetil-CoA son oxidados a CO2, y la energía que estaba acumulada es liberada en forma de energía química: GTP y poder reductor (electrones de alto potencial): NADH y FADH2. NADH y FADH2 son coenzimas (moléculas capaces de unirse a enzimas) capaces de acumular la energía en forma de poder reductor para su conversión en energía química en la fosforilación oxidativa.
El FADH2 de la succinato deshidrogenasa, al no poder desprenderse del enzima, debe oxidarse nuevamente in situ. El FADH2 cede sus dos hidrógenos a la ubiquinona (coenzima Q), que se reduce a ubiquinol (QH2) y abandona el enzima.
Las reacciones son:
Molécula
Enzima
Tipo de reacción
Reactivos/Coenzimas
Productos/Coenzima
I. Citrato
1. Aconitasa
Deshidratación
H2O
II. cis-Aconitato
2. Aconitasa
Hidratación
H2O
III. Isocitrato
3. Isocitrato deshidrogenasa
Oxidación
NAD+
NADH + H+
IV. Oxalosuccinato
4. Isocitrato deshidrogenasa
Descarboxilación
V. α-cetoglutarato
5. α-cetoglutaratodeshidrogenasa
Descarboxilación oxidativa
NAD+ +CoA-SH
NADH + H++ CO2
VI. Succinil-CoA
6. Succinil-CoA sintetasa
Hidrólisis
GDP+ Pi
GTP +CoA-SH
VII. Succinato
7. Succinato deshidrogenasa
Oxidación
FAD
FADH2
VIII. Fumarato
8. Fumarato Hidratasa
Adición (H2O)
H2O
IX. L-Malato
9. Malato deshidrogenasa
Oxidación
NAD+
NADH + H+
X. Oxaloacetato
10. Citrato sintasa
Condensación
NOTA: El cis-aconitato es un intermedio de reacción muy inestable que rápidamente se transforma en citrato, antes de comenzar la tercera reacción.
Visión simplificada y rendimiento del proceso
El paso previo es la oxidación del piruvato, produciendo un acetil-CoA y un CO2.
El acetil-CoA reacciona con una molécula de oxaloacetato (4 carbonos) para formar citrato (6 carbonos), mediante una reacción de condensación.
A través de una serie de reacciones el citrato se convierte de nuevo en oxaloacetato.
Durante estas reacciones, se substraen 2 átomos de carbono del citrato (6C) para dar oxalacetato (4C); dichos átomos de carbono se liberan en forma de CO2
El ciclo consume netamente 1 acetil-CoA y produce 2 CO2. También consume 3 NAD+ y 1 FAD, produciendo 3 NADH + 3 H+ y 1 FADH2.
El rendimiento de un ciclo es (por cada molécula de piruvato): 1 GTP, 3 NADH, 1 FADH2, 2CO2.
Cada NADH, cuando se oxide en la cadena respiratoria, originará 2,5 moléculas de ATP (3 x 2,5 = 7,5), mientras que el FADH2 dará lugar a 1,5 ATP. Por tanto, 7,5 + 1,5 + 1 GTP = 10 ATP por cada acetil-CoA que ingresa en el ciclo de Krebs.
Cada molécula de glucosa produce (vía glucólisis) dos moléculas de piruvato, que a su vez producen dos acetil-CoA, por lo que por cada molécula de glucosa en el ciclo de Krebs se produce: 4CO2, 2 GTP, 6 NADH, 2 FADH2; total 36 ATP.
Regulación
Muchas de las enzimas del ciclo de Krebs son reguladas por retroalimentación negativa, por unión alostérica del ATP, que es un producto de la vía y un indicador del nivel energético de la célula. Entre estas enzimas se incluye el complejo de la piruvato deshidrogenasa que sintetiza el acetil-CoA necesario para la primera reacción del ciclo a partir de piruvato, procedente de la glucólisis o del catabolismo de aminoácidos. También las enzimas citrato sintasa, isocitrato deshidrogenasa y α-cetoglutarato deshidrogenasa, que catalizan las tres primeras reacciones del ciclo de Krebs, son inhibidas por altas concentraciones de ATP. Esta regulación frena este ciclo degradativo cuando el nivel energético de la célula es bueno.
Algunas enzimas son también reguladas negativamente cuando el nivel de poder reductor de la célula es elevado. El mecanismo de esta inhibición es una inhibición competitiva por producto (por NADH) de las enzimas que emplean NAD+ como sustrato. Así se regulan, entre otros, los complejos piruvato deshidrogenasa y citrato sintasa.
No hay comentarios:
Publicar un comentario